A Finite Element Solution Algorithm for the Navier-stokes Equations
نویسنده
چکیده
منابع مشابه
Optimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملA Mixed Finite Element Method for Navier-stokes Equations
This paper describes a numerical solution of Navier-Stokes equations. It includes algorithms for discretization by finite element methods and a posteriori error estimation of the computed solutions. In order to evaluate the performance of the method, the numerical results are compared with some previously published works or with others coming from commercial code like ADINA system. AMS Mathemat...
متن کاملTwo-level Penalized Finite Element Methods for the Stationary Navier-stoke Equations
In this article, we first consider some penalized finite element methods for the stationary Navier-stokes equations, based on the finite element space pair (Xh, Mh) which satisfies the discrete inf-sup condition for the P2−P0 element or does not satisfy the discrete inf-sup condition for the P1−P0 element. Then, we consider two-level penalty finite element methods which involve solving one smal...
متن کاملTwo-Level Stabilized Finite Volume Methods for Stationary Navier-Stokes Equations
We propose two algorithms of two-level methods for resolving the nonlinearity in the stabilized finite volume approximation of the Navier-Stokes equations describing the equilibrium flow of a viscous, incompressible fluid. A macroelement condition is introduced for constructing the local stabilized finite volume element formulation. Moreover the two-level methods consist of solving a small nonl...
متن کاملHigh Order Finite Element Discretization of the Compressible Euler and Navier-Stokes Equations
We present a high order accurate streamline-upwind/Petrov-Galerkin (SUPG) algorithm for the solution of the compressible Euler and Navier-Stokes equations. The ow equations are written in terms of entropy variables which result in symmetric ux Jacobian matrices and a dimensionally consistent Finite Element discretization. We show that solutions derived from quadratic element approximation are o...
متن کامل